

Clouds and aerosols radiative effects over West Africa, seasonal and meridional patterns

Olivier Geoffroy, Dominique Bouniol, Françoise Guichard

CNRM-GAME, Météo France & CNRS, Toulouse, France

Context and objectives

Clouds = **critical component** of climate models

(Arakawa, 1975; IPCC, 1990, 1995, 2001, 2007)

West Africa specificities:

- Continental zone with large meridional gradient in temperature, rain and vegetation.
- Large annual cycle of humidity, temperature, aerosols, clouds and rain related to the West African Monsoon.
- Large atmosphere **loading of mineral dust** (Slingo, 2006) and biomass burning aerosol.
- **Different cloud types** occur in this region (Bouniol et al, 2012)

Objective:

Determination of **CRE and ARE** (TOA, BOA, atmospheric)

- Over a meridional transect
- Annual cycle
- CRE of different cloud types
- → Identification of main bias in GCMs

Method

CRE = All-sky flux - Clear-sky flux (cloud radiative effect)

ARE = (aerosol radiative effect)

Clear-sky flux

- **Clean**-sky flux

Non-observed

→ use of a **Radiative transfer model** to estimate clear- and clean-sky fluxes

Data and method

Data from AMMA, ARM, AMMA-CATCH

RRTM Inputs

- → Molecular species from RRTM climatology.
- → Humidity and temperature profiles
- Radiosondes (Niamey; 4 to 8 per day)
- **ECMWF operational analysis** (Niamey, Agoufou, Nalohou; 4 per day)
- → Aerosols AOD, SSA, AP from AERONET (1 per hour) (Holben et al., 2006)
- → Surface albedo from **AMF** (Niamey), **AWS** (Agoufou, Nalohou) or **LSA-SAF** (D. Carrer, C. Meurey)
- → Surface temperature from AMF, AWS

Radiative fluxes from RADAGAST, AMMA-CATCH

- \rightarrow BOA
- AMF (Niamey, 1-min resolution) (Slingo et al., 2006; 2009)
- **AWS** (Agoufou, Nalohou, 15- and 30-min resolution)
- **→TOA**
- **GERB** (15-min resolution) (Harries et al., 2005)

Cloud masks (Niamey) from radar, lidar from AMF (F. Couvreux) (*Illingworth et al.*, 2007; *Bouniol et al.*, 2012)

Radiative transfert model:

- RRTM LW and SW (AER) (Iacono et al, 2008; Morcrette et al, 2008).

Radiatives fluxes

Clear-sky Clean-sky

ARE & CRE

(30-minute resolution)

Aerosols

Input SW: SSA, AP and AOD for each wavelength band

- → SSA and AP from AERONET (4 wavelength) and linear interpolation for other wavelength.
- \rightarrow **AOD** from AERONET, Angstrom coefficient α from AERONET Extrapolation to **SW** wavelength bands using **Angstrom relationship**,

$$\tau(\lambda) = \tau_0 (\frac{\lambda}{\lambda_0})^{-\alpha} \qquad \lambda_0 = 870 \text{ nm}$$

Input LW: AOD for each wavelength band

→ Extrapolation to **LW** wavelength bands using Stanelle et al (2010) **tabulated values** of specific extinction coefficient and SSA:

$$\tau_{abs}(\lambda) = \tau_0 \frac{b_e(\lambda)}{b_{e0}} \frac{1}{1 - SSA(\lambda)} \qquad \lambda_0 = 1020 \text{ nm}$$

→ **Vertical profile** of aerosols:

Redistribution of AOD in each layers by using MACC profiles of aerosol mixing ratio

Plan

- 1. Method
- 2. Comparison of modeled / measured clear-sky fluxes
- 3. ARE and CRE annual cycle, meridional transect
- 4. Contribution of the different cloud types

- Larger differences at TOA (SW). With local albedo, TOA SW bias $\sim 30~\text{Wm}^{-2}$
- Larger bias for small AOD and low IWP. Underestimation of AOD?
- Similar results in Agoufou, larger differences in Nalohou at BOA
- Bias SW TOA and LW → opposite sign

Plan

- 1. Method
- 2. Comparison of modeled / measured clear-sky fluxes
- 3. ARE and CRE annual cycle, meridional transect
- BOA
- TOA
- atmospheric
- 4. Contribution of the different cloud types

ARE BOA

- Larger ARE in the SW. Cooling of the surface
- Net BOA ARE in the dry season consistent with McFarlane et al (2009)

CRE BOA

- SW: Large annual cycle. Southward gradient.
- LW: Lower in JAS (Water vapor masking). LW < SW

ARE TOA

- Relative amplitude LW ~ SW
- Small total effect

CRE TOA

- SW dominates southward during the monsoon
- LW dominates northward and in the dry season
- JAS pattern consistent with CERES-EBAF 1978-2008 mean (Roehrig et al., 2013).

Atmospheric (= TOA net - BOA net)

Positiv sign = warming

ARE atmospheric

- LW small effect. Cooling
- SW warming. Larger during the monsoon except in Nalohou
- LW+ SW: warming

Atmospheric (= TOA net - BOA net)

Positiv sign = warming

CRE atmospheric

- LW: warming effect (larger relative TOA CRE than TOA ARE)
- SW: small effect
- Large amplitude in the dry season in Nalohou due to clear-sky bias ?
- SW+ LW: warming. Large during the monsoon.
- Comparison with Miller et al. (2012): Similar annual cycle but magnitude differ. e.g. CRE+ARE atmospheric 30 Wm⁻² lower
- differences with GCM

Plan

- 1. Method
- 2. Comparison of modeled / measured clear-sky fluxes
- 3. ARE and CRE annual cycle, meridional transect
- 4. Contribution of the different cloud types

The four cloud types

Example of the different cloud types and aerosol layer diurnal structure

CRE / cloud type (Niamey)

Monthly mean CRE

- Cv: larger effect
- Then mid-level and cirrus

CRE / cloud type (Niamey)

Instantaneous (30-min) CRE

CRE / cloud type (Niamey)

Comparison with CRE_{B12} of Bouniol et al (2012)

Systematic differences for deep convective clouds Cv

- LW: due to cold anomalies associated with Cv?
- SW: aerosols?

Instantaneous (30-min) CRE

CRE=f(depth), anvil cloud

Conclusion and perspective

Use of AMMA, AMF (Niamey), AWS (Nalohou, Agoufou) data and RRTM to diagnose clear- and clean-sky fluxes

- → Clear-sky fluxes in good agreement with measurements whereas some biases specially for dry cases and for BOA fluxes in Nalohou.
- → Quantitative estimates of BOA, TOA and atmospheric ARE and CRE.
- Annual cycle and meridional variation of CRE and ARE in agreement with West African Monsoon
- Magnitude of ARE+CRE in Niamey differs from previous study (Miller et al., 2012).
- → Contribution of the 4 main cloud types to the CRE

 Largest contribution of deep convection / anvil, then mid-level and cirrus.

 Results in agreement with Bouniol et al. (2012) (except different magnitude for anvil)

Perspectives:

Analysis of CMIP5 AOGCMs in this region

- → Determine main errors associated with cloud amount, cloud diurnal timing, cloud radiative properties, vertical structure... versus other sources of errors (aerosols, water vapour, temperature).
- → Possibility to adapt such an approach to Cloudsat-Calipso cloud data for sites with no information about the type of cloud in presence.

Reference: Geoffroy, Bouniol, Guichard, 2015: Clouds and aerosols radiative effects over West Africa, seasonal and meridional patterns to be sudmitted to J. Appl. Met. Clim.

